Audit logs containing system level events are frequently used for behavior modeling as they can provide detailed insight into cyber-threat occurrences. However, mapping low-level system events in audit logs to highlevel behaviors has been a major challenge in identifying host contextual behavior for the purpose of detecting potential cyber threats. Relying on domain expert knowledge may limit its practical implementation. This paper presents TapTree, an automated process-tree based technique to extract host behavior by compiling system events' semantic information. After extracting behaviors as system generated process trees, TapTree integrates event semantics as a representation of behaviors. To further reduce pattern matching workloads for the analyst, TapTree aggregates semantically equivalent patterns and optimizes representative behaviors. In our evaluation against a recent benchmark audit log dataset (DARPA OpTC), TapTree employs tree pattern queries and sequential pattern mining techniques to deduce the semantics of connected system events, achieving high accuracy for behavior abstraction and then Advanced Persistent Threat (APT) attack detection. Moreover, we illustrate how to update the baseline model gradually online, allowing it to adapt to new log patterns over time.


翻译:暂无翻译

0
下载
关闭预览

相关内容

序列模式挖掘 (sequence pattern mining )是指挖掘相对时间或其他模式出现频率高的模式,典型的应用还是限于离散型的序列。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员