This paper develops structure-preserving, oscillation-eliminating discontinuous Galerkin (OEDG) schemes for ideal magnetohydrodynamics (MHD), as a sequel to our recent work [Peng, Sun, and Wu, OEDG: Oscillation-eliminating discontinuous Galerkin method for hyperbolic conservation laws, 2023]. The schemes are based on a locally divergence-free (LDF) oscillation-eliminating (OE) procedure to suppress spurious oscillations while maintaining many of the good properties of original DG schemes, such as conservation, local compactness, and optimal convergence rates. The OE procedure is built on the solution operator of a novel damping equation -- a simple linear ordinary differential equation (ODE) whose exact solution can be exactly formulated. Because this OE procedure does not interfere with DG spatial discretization and RK stage update, it can be easily incorporated to existing DG codes as an independent module. These features make the proposed LDF OEDG schemes highly efficient and easy to implement.In addition, we present a positivity-preserving (PP) analysis of the LDF OEDG schemes on Cartesian meshes via the optimal convex decomposition technique and the geometric quasi-linearization (GQL) approach. Efficient PP LDF OEDG schemes are obtained with the HLL flux under a condition accessible by the simple local scaling PP limiter.Several one- and two-dimensional MHD tests confirm the accuracy, effectiveness, and robustness of the proposed structure-preserving OEDG schemes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员