Typically, information extraction (IE) requires a pipeline approach: first, a sequence labeling model is trained on manually annotated documents to extract relevant spans; then, when a new document arrives, a model predicts spans which are then post-processed and standardized to convert the information into a database entry. We replace this labor-intensive workflow with a transformer language model trained on existing database records to directly generate structured JSON. Our solution removes the workload associated with producing token-level annotations and takes advantage of a data source which is generally quite plentiful (e.g. database records). As long documents are common in information extraction tasks, we use gradient checkpointing and chunked encoding to apply our method to sequences of up to 32,000 tokens on a single GPU. Our Doc2Dict approach is competitive with more complex, hand-engineered pipelines and offers a simple but effective baseline for document-level information extraction. We release our Doc2Dict model and code to reproduce our experiments and facilitate future work.


翻译:通常,信息提取(IE)需要一种编审方法:首先,一个序列标签模式在人工加注的文件上经过培训,以抽取相关的间隔;然后,当新文件到达时,一个模型预测出将信息转换为数据库条目的后处理和标准化的跨度。我们用以现有数据库记录培训的变压器语言模式取代这一劳动密集型工作流程,直接生成结构化的JSON。我们的解决方案消除了制作象征性说明的工作量,并利用了一个通常相当繁琐的数据源(例如数据库记录)。只要文件在信息提取任务中很常见,我们就使用梯度检查站和块状编码来将我们的方法应用于单个GPU上多达32,000个标记的序列。我们的Doc2Dict方法具有竞争力,与更复杂、手工设计的管道竞争,并为文件级信息提取提供一个简单而有效的基准。我们发布了我们的Doc2Dict模型和代码,以复制我们的实验并为今后的工作提供便利。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2019年3月1日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员