Research and practice in Intelligent Design (ID) have significantly enhanced engineering innovation, efficiency, quality, and productivity over recent decades, fundamentally reshaping how engineering designers think, behave, and interact with design processes. The recent emergence of Foundation Models (FMs), particularly Large Language Models (LLMs), has demonstrated general knowledge-based reasoning capabilities, and open new avenues for further transformation in engineering design. In this context, this paper introduces Intelligent Design 4.0 (ID 4.0) as an emerging paradigm empowered by foundation model-based agentic AI systems. We review the historical evolution of ID across four distinct stages: rule-based expert systems, task-specific machine learning models, large-scale foundation AI models, and the recent emerging paradigm of foundation model-based multi-agent collaboration. We propose an ontological framework for ID 4.0 and discuss its potential to support end-to-end automation of engineering design processes through coordinated, autonomous multi-agent-based systems. Furthermore, we discuss challenges and opportunities of ID 4.0, including perspectives on data foundations, agent collaboration mechanisms, and the formulation of design problems and objectives. In sum, these insights provide a foundation for advancing Intelligent Design toward greater adaptivity, autonomy, and effectiveness in addressing the growing complexity of engineering design.
 翻译:暂无翻译