The celebrated Morris counter uses $\log_2\log_2 n + O(\log_2 \sigma^{-1})$ bits to count up to $n$ with a relative error $\sigma$, where if $\hat{\lambda}$ is the estimate of the current count $\lambda$, then $\mathbb{E}|\hat{\lambda}-\lambda|^2 <\sigma^2\lambda^2$. A natural generalization is \emph{multi-dimensional} approximate counting. Let $d\geq 1$ be the dimension. The count vector $x\in \mathbb{N}^d$ is incremented entry-wisely over a stream of coordinates $(w_1,\ldots,w_n)\in [d]^n$, where upon receiving $w_k\in[d]$, $x_{w_k}\gets x_{w_k}+1$. A \emph{$d$-dimensional approximate counter} is required to count $d$ coordinates simultaneously and return an estimate $\hat{x}$ of the count vector $x$. Aden-Ali, Han, Nelson, and Yu \cite{aden2022amortized} showed that the trivial solution of using $d$ Morris counters that track $d$ coordinates separately is already optimal in space, \emph{if each entry only allows error relative to itself}, i.e., $\mathbb{E}|\hat{x}_j-x_j|^2<\sigma^2|x_j|^2$ for each $j\in [d]$. However, for another natural error metric -- the \emph{Euclidean mean squared error} $\mathbb{E} |\hat{x}-x|^2$ -- we show that using $d$ separate Morris counters is sub-optimal. In this work, we present a simple and optimal $d$-dimensional counter with Euclidean relative error $\sigma$, i.e., $\mathbb{E} |\hat{x}-x|^2 <\sigma^2|x|^2$ where $|x|=\sqrt{\sum_{j=1}^d x_j^2}$, with a matching lower bound. The upper and lower bounds are proved with ideas that are strikingly simple. The upper bound is constructed with a certain variable-length integer encoding and the lower bound is derived from a straightforward volumetric estimation of sphere covering.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月15日
Arxiv
1+阅读 · 2024年12月13日
Arxiv
1+阅读 · 2024年12月13日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
1+阅读 · 2024年12月15日
Arxiv
1+阅读 · 2024年12月13日
Arxiv
1+阅读 · 2024年12月13日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员