The fine-grained complexity of computing the Fr\'echet distance has been a topic of much recent work, starting with the quadratic SETH-based conditional lower bound by Bringmann from 2014. Subsequent work established largely the same complexity lower bounds for the Fr\'echet distance in 1D. However, the imbalanced case, which was shown by Bringmann to be tight in dimensions $d\geq 2$, was still left open. Filling in this gap, we show that a faster algorithm for the Fr\'echet distance in the imbalanced case is possible: Given two 1-dimensional curves of complexity $n$ and $n^{\alpha}$ for some $\alpha \in (0,1)$, we can compute their Fr\'echet distance in $O(n^{2\alpha} \log^2 n + n \log n)$ time. This rules out a conditional lower bound of the form $O((nm)^{1-\epsilon})$ that Bringmann showed for $d \geq 2$ and any $\varepsilon>0$ in turn showing a strict separation with the setting $d=1$. At the heart of our approach lies a data structure that stores a 1-dimensional curve $P$ of complexity $n$, and supports queries with a curve $Q$ of complexity~$m$ for the continuous Fr\'echet distance between $P$ and $Q$. The data structure has size in $\mathcal{O}(n\log n)$ and uses query time in $\mathcal{O}(m^2 \log^2 n)$. Our proof uses a key lemma that is based on the concept of visiting orders and may be of independent interest. We demonstrate this by substantially simplifying the correctness proof of a clustering algorithm by Driemel, Krivo\v{s}ija and Sohler from 2015.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关VIP内容
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员