Merge trees are a common topological descriptor for data with a hierarchical component, such as terrains and scalar fields. The interleaving distance, in turn, is a common distance measure for comparing merge trees. However, the interleaving distance for merge trees is solely based on the hierarchical structure, and disregards any other geometrical or topological properties that might be present in the underlying data. Furthermore, the interleaving distance is NP-hard to compute. In this paper, we introduce a form of ordered merge trees that does capture intrinsic order present in the data. We further define a natural variant of the interleaving distance, the monotone interleaving distance, which is an order preserving distance measure for ordered merge trees. Analogous to the regular interleaving distance for merge trees, we show that the monotone variant has three equivalent definitions in terms of two maps, a single map, or a labelling. The labelling-based definition fairly directly leads to an efficient algorithm for computing the monotone interleaving distance, but unfortunately it computes only an approximation thereof. Instead, we discover a surprising connection between the monotone interleaving distance of ordered merge trees and the Fr\'{e}chet distance of 1D curves. As a result, the monotone interleaving distance between two ordered merge trees of total complexity $n$ can be computed exactly in $\tilde O(n^2)$ time. The connection between the monotone interleaving distance and the Fr\'{e}chet distance establishes a new bridge between the fields of computational topology/topological data analysis, where interleaving distances are studied extensively, and computational geometry, where Fr\'{e}chet distances are studied extensively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年7月26日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2021年7月26日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
Arxiv
31+阅读 · 2018年11月13日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员