This study evaluates a data assimilation framework based on reduced-order modeling (ROM-DA), complemented by a hybrid data-filling strategy, to reconstruct dynamic temperature fields in a phase-change-material (PCM) integrated solar chimney from limited temperature measurements. The goal is to enhance the estimation accuracy of the outlet airflow velocity. A regularized least-squares formulation is employed to estimate temperature distributions within an inclined solar chimney using RT-42 as the PCM. The methodology combines (i) a reduced-order model derived from high-fidelity finite-volume simulations of unsteady conjugate heat transfer with liquid-solid phase change and surface radiation, and (ii) three experimental datasets with 22, 135, and 203 measurement points. Missing data are reconstructed using a hybrid filling scheme based on boundary-layer and bicubic interpolations. The assimilated temperature fields are integrated into the thermally coupled forward solver to improve velocity predictions. Results show that the ROM-DA framework reconstructs the transient temperature fields in both the air and PCM domains with relative errors below 10 percent for sparse data and below 3 percent for expanded datasets. When applied to experimental measurements, the approach enhances the fidelity of temperature and velocity fields compared with the baseline model, reducing the outlet velocity RMS error by 20 percent. This represents the first application of a ROM-DA framework to a coupled multiphysics solar chimney with PCM integration, demonstrating its potential for near-real-time thermal state estimation and digital-twin development.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员