With the recent spike in the number and availability of Large Language Models (LLMs), it has become increasingly important to provide large and realistic benchmarks for evaluating Knowledge Graph Question Answering (KGQA) systems. So far the majority of benchmarks rely on pattern-based SPARQL query generation approaches. The subsequent natural language (NL) question generation is conducted through crowdsourcing or other automated methods, such as rule-based paraphrasing or NL question templates. Although some of these datasets are of considerable size, their pitfall lies in their pattern-based generation approaches, which do not always generalize well to the vague and linguistically diverse questions asked by humans in real-world contexts. In this paper, we introduce Spider4SPARQL - a new SPARQL benchmark dataset featuring 9,693 previously existing manually generated NL questions and 4,721 unique, novel, and complex SPARQL queries of varying complexity. In addition to the NL/SPARQL pairs, we also provide their corresponding 166 knowledge graphs and ontologies, which cover 138 different domains. Our complex benchmark enables novel ways of evaluating the strengths and weaknesses of modern KGQA systems. We evaluate the system with state-of-the-art KGQA systems as well as LLMs, which achieve only up to 45\% execution accuracy, demonstrating that Spider4SPARQL is a challenging benchmark for future research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

SPARQL(读作“sparkle”,SPARQL协议和RDF查询语言的首字母缩写)是一种RDF查询语言,也就是说,它是一种语义查询语言,用于数据库检索和操作以资源描述框架(RDF)格式存储的数据。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员