Anomalous sound detection (ASD) in the wild requires robustness to distribution shifts such as unseen low-SNR input mixtures of machine and noise types. State-of-the-art systems extract embeddings from an adapted audio encoder and detect anomalies via nearest-neighbor search, but fine tuning on noisy machine sounds often acts like a denoising objective, suppressing noise and reducing generalization under mismatched mixtures or inconsistent labeling. Training-free systems with frozen self-supervised learning (SSL) encoders avoid this issue and show strong first-shot generalization, yet their performance drops when mixture embeddings deviate from clean-source embeddings. We propose to improve SSL backbones with a retain-not-denoise strategy that better preserves information from mixed sound sources. The approach combines a multi-label audio tagging loss with a mixture alignment loss that aligns student mixture embeddings to convex teacher embeddings of clean and noise inputs. Controlled experiments on stationary, non-stationary, and mismatched noise subsets demonstrate improved robustness under distribution shifts, narrowing the gap toward oracle mixture representations.
翻译:暂无翻译