We consider the upper confidence bound strategy for Gaussian multi-armed bandits with known control horizon sizes $N$ and build its limiting description with a system of stochastic differential equations and ordinary differential equations. Rewards for the arms are assumed to have unknown expected values and known variances. A set of Monte-Carlo simulations was performed for the case of close distributions of rewards, when mean rewards differ by the magnitude of order $N^{-1/2}$, as it yields the highest normalized regret, to verify the validity of the obtained description. The minimal size of the control horizon when the normalized regret is not noticeably larger than maximum possible was estimated.


翻译:我们认为,对已知控制地平面大小的高斯族多武装强盗的高度信任约束战略是美元,并采用随机差分方程和普通差分方程来建立其限制性描述,假定武器奖励的预期值和已知差异不明,对报酬分配接近的情况进行了一套蒙特-卡洛模拟,平均奖励因平均数额不同而异,因为平均奖励额通常为1/2美元,以核实所得描述的有效性。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员