Most engineered pilings require substantially more force to be driven into the ground than they can resist during extraction. This requires relatively heavy equipment for insertion, which is problematic for anchoring in hard-to-access sites, including in extraterrestrial locations. In contrast, for tree roots, the external reaction force required to extract is much greater than required to insert--little more than the weight of the seed initiates insertion. This is partly due to the mechanism by which roots insert into the ground: tip extension. Proof-of-concept robotic prototypes have shown the benefits of using this mechanism, but a rigorous understanding of the underlying granular mechanics and how they inform the design of a robotic anchor is lacking. Here, we study the terradynamics of tip-extending anchors compared to traditional piling-like intruders, develop a set of design insights, and apply these to create a deployable robotic anchor. Specifically, we identify that to increase an anchor's ratio of extraction force to insertion force, it should: (i) extend beyond a critical depth; (ii) include hair-like protrusions; (iii) extend near-vertically, and (iv) incorporate multiple smaller anchors rather than a single large anchor. Synthesizing these insights, we developed a lightweight, soft robotic, root-inspired anchoring device that inserts into the ground with a reaction force less than its weight. We demonstrate that the 300 g device can deploy a series of temperature sensors 45 cm deep into loose Martian regolith simulant while anchoring with an average of 120 N, resulting in an anchoring-to-weight ratio of 40:1.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员