Differential privacy (DP) is the de facto notion of privacy both in theory and in practice. However, despite its popularity, DP imposes strict requirements which guard against strong worst-case scenarios. For example, it guards against seemingly unrealistic scenarios where an attacker has full information about all but one point in the data set, and still nothing can be learned about the remaining point. While preventing such a strong attack is desirable, many works have explored whether average-case relaxations of DP are easier to satisfy [HWR13,WLF16,BF16,LWX23]. In this work, we are motivated by the question of whether alternate, weaker notions of privacy are possible: can a weakened privacy notion still guarantee some basic level of privacy, and on the other hand, achieve privacy more efficiently and/or for a substantially broader set of tasks? Our main result shows the answer is no: even in the statistical setting, any reasonable measure of privacy satisfying nontrivial composition is equivalent to DP. To prove this, we identify a core set of four axioms or desiderata: pre-processing invariance, prohibition of blatant non-privacy, strong composition, and linear scalability. Our main theorem shows that any privacy measure satisfying our axioms is equivalent to DP, up to polynomial factors in sample complexity. We complement this result by showing our axioms are minimal: removing any one of our axioms enables ill-behaved measures of privacy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月15日
Arxiv
0+阅读 · 11月17日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
0+阅读 · 12月15日
Arxiv
0+阅读 · 11月17日
Arxiv
43+阅读 · 2024年1月25日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员