As large AI models become increasingly valuable assets, the risk of model weight exfiltration from inference servers grows accordingly. An attacker controlling an inference server may exfiltrate model weights by hiding them within ordinary model outputs, a strategy known as steganography. This work investigates how to verify model responses to defend against such attacks and, more broadly, to detect anomalous or buggy behavior during inference. We formalize model exfiltration as a security game, propose a verification framework that can provably mitigate steganographic exfiltration, and specify the trust assumptions associated with our scheme. To enable verification, we characterize valid sources of non-determinism in large language model inference and introduce two practical estimators for them. We evaluate our detection framework on several open-weight models ranging from 3B to 30B parameters. On MOE-Qwen-30B, our detector reduces exfiltratable information to <0.5% with false-positive rate of 0.01%, corresponding to a >200x slowdown for adversaries. Overall, this work further establishes a foundation for defending against model weight exfiltration and demonstrates that strong protection can be achieved with minimal additional cost to inference providers.


翻译:随着大型人工智能模型日益成为高价值资产,推理服务器中模型权重泄露的风险也相应增加。攻击者通过控制推理服务器,可能将模型权重隐藏在常规模型输出中进行窃取,这种策略被称为隐写术。本研究探讨了如何通过验证模型响应来防御此类攻击,并更广泛地检测推理过程中的异常或错误行为。我们将模型泄露形式化为一个安全博弈,提出一种可证明缓解隐写泄露的验证框架,并明确了该方案所依赖的信任假设。为实现验证,我们界定了大语言模型推理中非确定性的有效来源,并为此引入了两种实用的估计器。我们在多个参数量从30亿到300亿的开源权重模型上评估了检测框架。在MOE-Qwen-30B模型上,我们的检测器将可泄露信息降至<0.5%,同时保持0.01%的误报率,相当于使攻击者的效率降低超过200倍。总体而言,本研究进一步奠定了防御模型权重泄露的基础,并证明只需为推理服务提供商增加极低额外成本即可实现强效防护。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员