Deploying foundation models (FMs) on uncrewed aerial vehicles (UAVs) promises broad ``low-altitude economy'' applications. Split federated learning (SFL)-based fine-tuning leverages distributed data while keeping raw data local and reduces client-side burden by partitioning the model between client and server. However, the per-round training latency is dominated by stragglers. Training paradigms featuring parallel gradient transmission (GT) allocate dedicated portions of downlink communication resources to each client. They may leave resources idle and suffer from prolonged GT latency, especially in UAV networks, where the communication latency typically far exceeds the computation latency. To address this, we propose a sequential GT paradigm, where the server dedicates all downlink resources for the current GT. We further propose communication-pipelined SFL (CPSFL), characterized by downlink GT priority scheduling and intra-round asynchronous training. We investigate CPSFL-based LoRA fine-tuning of FMs in UAV networks and formulate an optimization problem to minimize a weighted sum of per-round training latency and worst-case client energy consumption by optimizing the split point selection (SPS) and the computing and communication resource allocation (CCRA) (the uplink bandwidth allocation and the server computing frequency allocation). To solve this problem, we develop an attention-based deep reinforcement learning (DRL) framework, where the base station agent decides the split point and the CCRA in each round by leveraging previous round information, including UAV trajectories. Simulation results show that the proposed DRL-based CPSFL scheme outperforms the parallel GT benchmarks, the ablation variants, the fixed CCRA scheme, while approaching the best fixed-SPS scheme.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员