Multimodal Machine Learning has emerged as a prominent research direction across various applications such as Sentiment Analysis, Emotion Recognition, Machine Translation, Hate Speech Recognition, and Movie Genre Classification. This approach has shown promising results by utilizing modern deep learning architectures. Despite the achievements made, challenges remain in data representation, alignment techniques, reasoning, generation, and quantification within multimodal learning. Additionally, assumptions about the dominant role of textual modality in decision-making have been made. However, limited investigations have been conducted on the influence of different modalities in Multimodal Machine Learning systems. This paper aims to address this gap by studying the impact of each modality on multimodal learning tasks. The research focuses on verifying presumptions and gaining insights into the usage of different modalities. The main contribution of this work is the proposal of a methodology to determine the effect of each modality on several Multimodal Machine Learning models and datasets from various tasks. Specifically, the study examines Multimodal Sentiment Analysis, Multimodal Emotion Recognition, Multimodal Hate Speech Recognition, and Multimodal Disease Detection. The study objectives include training SOTA MultiModal Machine Learning models with masked modalities to evaluate their impact on performance. Furthermore, the research aims to identify the most influential modality or set of modalities for each task and draw conclusions for diverse multimodal classification tasks. By undertaking these investigations, this research contributes to a better understanding of the role of individual modalities in multi-modal learning and provides valuable insights for future advancements in this field.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月2日
Arxiv
25+阅读 · 2023年6月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员