Although the advantages of just-in-time compilation over traditional interpretive execution are widely recognised, there needs to be more current research investigating and repositioning the performance differences between these two execution models relative to contemporary workloads. Specifically, there is a need to examine the performance differences between Java Runtime Environment (JRE) Java Virtual Machine (JVM) tiered execution and JRE JVM interpretive execution relative to modern multicore architectures and modern concurrent and parallel benchmark workloads. This article aims to fill this research gap by presenting the results of a study that compares the performance of these two execution models under load from the Renaissance Benchmark Suite. This research is relevant to anyone interested in understanding the performance differences between just-in-time compiled code and interpretive execution. It provides a contemporary assessment of the interpretive JVM core, the entry and starting point for bytecode execution, relative to just-in-time tiered execution. The study considers factors such as the JRE version, the GNU GCC version used in the JRE build toolchain, and the garbage collector algorithm specified at runtime, and their impact on the performance difference envelope between interpretive and tiered execution. Our findings indicate that tiered execution is considerably more efficient than interpretive execution, and the performance gap has increased, ranging from 4 to 37 times more efficient. On average, tiered execution is approximately 15 times more efficient than interpretive execution. Additionally, the performance differences between interpretive and tiered execution are influenced by workload category, with narrower performance differences observed for web-based workloads and more significant differences for Functional and Scala-type workloads.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
19+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月8日
Arxiv
0+阅读 · 2023年6月6日
Arxiv
12+阅读 · 2021年3月25日
VIP会员
相关VIP内容
专知会员服务
19+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员