Traditional ontology design emphasizes disjoint and exhaustive top-level distinctions such as continuant vs. occurrent, abstract vs. concrete, or type vs. instance. These distinctions are used to structure unified hierarchies where every entity is classified under a single upper-level category. Wikidata, by contrast, does not enforce a singular foundational taxonomy. Instead, it accommodates multiple classification axes simultaneously under the shared root class entity. This paper analyzes the structural implications of Wikidata's polyhierarchical and multi-axial design. The Wikidata architecture enables a scalable and modular approach to ontology construction, especially suited to collaborative and evolving knowledge graphs.


翻译:传统本体设计强调互斥且完备的顶层区分,例如持续体与发生体、抽象与具体、类型与实例。这些区分用于构建统一的层级结构,其中每个实体均被归类于单一的上层类别。相比之下,维基数据并不强制采用单一的基础分类体系,而是在共享根类实体下同时容纳多个分类轴。本文分析了维基数据多层级与多轴设计的结构影响。维基数据的架构支持可扩展且模块化的本体构建方法,尤其适用于协作式与演进式知识图谱。

0
下载
关闭预览

相关内容

维基数据(Wikidata)是一个具有超过4600万个数据项的维基数据库。
【2020新书】预训练Transformer模型的文本排序
专知会员服务
63+阅读 · 2020年10月18日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:LDA主题模型
LibRec智能推荐
29+阅读 · 2017年12月4日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:LDA主题模型
LibRec智能推荐
29+阅读 · 2017年12月4日
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员