An important question in deploying large language models (LLMs) is how to augment LLMs with private data. We propose Differentially Private In-context Learning (DP-ICL) to enable LLMs to adapt to new tasks while maintaining privacy guarantees. DP-ICL performs private inference by establishing noisy consensus over an ensemble of exemplars using the Report-Noisy-Max mechanism. We evaluate DP-ICL on four benchmarks and find that it achieves comparable performance (<2\% degradation) with non-private ICL.


翻译:在部署大型语言模型(LLMs)时一个重要问题是如何使用私有数据来增强LLMs。我们提出了差分隐私上下文学习(DP-ICL)来实现LLMs适应新任务的同时保持隐私保障。DP-ICL通过使用报告-嘈杂最大机制,在示例模型组中建立嘈杂的共识进行隐私推断。我们在四个基准测试中评估DP-ICL,发现它实现了与非私有ICL相当的性能(<2%的降级)。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
126+阅读 · 2022年4月21日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员