This paper presents a new synthesis-based approach for solving the Learning from Demonstration (LfD) problem in robotics. Given a set of user demonstrations, the goal of programmatic LfD is to learn a policy in a programming language that can be used to control a robot's behavior. We address this problem through a novel program synthesis algorithm that leverages two key ideas: First, to perform fast and effective generalization from user demonstrations, our synthesis algorithm views these demonstrations as strings over a finite alphabet and abstracts programs in our DSL as regular expressions over the same alphabet. This regex abstraction facilitates synthesis by helping infer useful program sketches and pruning infeasible parts of the search space. Second, to deal with the large number of object types in the environment, our method leverages a Large Language Model (LLM) to guide search. We have implemented our approach in a tool called Prolex and present the results of a comprehensive experimental evaluation on 120 benchmarks involving 40 unique tasks in three different environments. We show that, given a 120 second time limit, Prolex can find a program consistent with the demonstrations in 80% of the cases. Furthermore, for 81% of the tasks for which a solution is returned, Prolex is able to find the ground truth program with just one demonstration. To put these results in perspective, we conduct a comparison against two baselines and show that both perform much worse.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年6月18日
Arxiv
0+阅读 · 2023年6月16日
Arxiv
66+阅读 · 2021年6月18日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年6月18日
Top
微信扫码咨询专知VIP会员