Clustering is a fundamental task in machine learning and data analysis, but it frequently fails to provide fair representation for various marginalized communities defined by multiple protected attributes -- a shortcoming often caused by biases in the training data. As a result, there is a growing need to enhance the fairness of clustering outcomes, ideally by making minimal modifications, possibly as a post-processing step after conventional clustering. Recently, Chakraborty et al. [COLT'25] initiated the study of \emph{closest fair clustering}, though in a restricted scenario where data points belong to only two groups. In practice, however, data points are typically characterized by many groups, reflecting diverse protected attributes such as age, ethnicity, gender, etc. In this work, we generalize the study of the \emph{closest fair clustering} problem to settings with an arbitrary number (more than two) of groups. We begin by showing that the problem is NP-hard even when all groups are of equal size -- a stark contrast with the two-group case, for which an exact algorithm exists. Next, we propose near-linear time approximation algorithms that efficiently handle arbitrary-sized multiple groups, thereby answering an open question posed by Chakraborty et al. [COLT'25]. Leveraging our closest fair clustering algorithms, we further achieve improved approximation guarantees for the \emph{fair correlation clustering} problem, advancing the state-of-the-art results established by Ahmadian et al. [AISTATS'20] and Ahmadi et al. [2020]. Additionally, we are the first to provide approximation algorithms for the \emph{fair consensus clustering} problem involving multiple (more than two) groups, thus addressing another open direction highlighted by Chakraborty et al. [COLT'25].


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
70+阅读 · 2022年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员