For the intersection of the Stiefel manifold and the set of nonnegative matrices in $\mathbb{R}^{n\times r}$, we present global and local error bounds with easily computable residual functions and explicit coefficients. Moreover, we show that the error bounds cannot be improved except for the coefficients, which explains why two square-root terms are necessary in the bounds when $1 < r < n$ for the nonnegativity and orthogonality, respectively. The error bounds are applied to penalty methods for minimizing a Lipschitz continuous function with nonnegative orthogonality constraints. Under only the Lipschitz continuity of the objective function, we prove the exactness of penalty problems that penalize the nonnegativity constraint, or the orthogonality constraint, or both constraints. Our results cover both global and local minimizers.


翻译:对于Stiefel 元件和一套非负矩阵的交叉点, $\mathbb{R ⁇ n\times r}$, 我们用容易计算剩余函数和明确系数来显示全球和局部误差界限。 此外, 我们显示, 错误界限除系数外是无法改进的, 这解释了为什么在界限上需要两个正方根术语, 分别用于非惯性和非正向性 $ 1 < r < n$ 。 错误界限适用于以非正向性或异向性限制来尽量减少利普西茨连续函数的处罚方法。 在目标功能的利普西茨连续性下, 我们只证明惩罚非惯性限制、 或正向性制约或两种制约的处罚问题的确切性。 我们的结果涵盖全球和地方最小化者 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员