Fenchel-Young losses are a family of convex loss functions, encompassing the squared, logistic and sparsemax losses, among others. Each Fenchel-Young loss is implicitly associated with a link function, for mapping model outputs to predictions. For instance, the logistic loss is associated with the soft argmax link function. Can we build new loss functions associated with the same link function as Fenchel-Young losses? In this paper, we introduce Fitzpatrick losses, a new family of convex loss functions based on the Fitzpatrick function. A well-known theoretical tool in maximal monotone operator theory, the Fitzpatrick function naturally leads to a refined Fenchel-Young inequality, making Fitzpatrick losses tighter than Fenchel-Young losses, while maintaining the same link function for prediction. As an example, we introduce the Fitzpatrick logistic loss and the Fitzpatrick sparsemax loss, counterparts of the logistic and the sparsemax losses. This yields two new tighter losses associated with the soft argmax and the sparse argmax, two of the most ubiquitous output layers used in machine learning. We study in details the properties of Fitzpatrick losses and in particular, we show that they can be seen as Fenchel-Young losses using a modified, target-dependent generating function. We demonstrate the effectiveness of Fitzpatrick losses for label proportion estimation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年7月1日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年7月1日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
13+阅读 · 2019年11月14日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员