The ubiquity of missing data in urban intelligence systems, attributable to adverse environmental conditions and equipment failures, poses a significant challenge to the efficacy of downstream applications, notably in the realms of traffic forecasting and energy consumption prediction. Therefore, it is imperative to develop a robust spatio-temporal learning methodology capable of extracting meaningful insights from incomplete datasets. Despite the existence of methodologies for spatio-temporal graph forecasting in the presence of missing values, unresolved issues persist. Primarily, the majority of extant research is predicated on time-series analysis, thereby neglecting the dynamic spatial correlations inherent in sensor networks. Additionally, the complexity of missing data patterns compounds the intricacy of the problem. Furthermore, the variability in maintenance conditions results in a significant fluctuation in the ratio and pattern of missing values, thereby challenging the generalizability of predictive models. In response to these challenges, this study introduces GeoMAE, a self-supervised spatio-temporal representation learning model. The model is comprised of three principal components: an input preprocessing module, an attention-based spatio-temporal forecasting network (STAFN), and an auxiliary learning task, which draws inspiration from Masking AutoEncoders to enhance the robustness of spatio-temporal representation learning. Empirical evaluations on real-world datasets demonstrate that GeoMAE significantly outperforms existing benchmarks, achieving up to 13.20\% relative improvement over the best baseline models.
翻译:暂无翻译