We propose a data structure in $d$-dimensional hyperbolic space that can be considered a natural counterpart to quadtrees in Euclidean spaces. Based on this data structure we propose a so-called L-order for hyperbolic point sets, which is an extension of the Z-order defined in Euclidean spaces. Using these quadtrees and the L-order we build geometric spanners. Near-linear size $(1+\epsilon)$-spanners do not exist in hyperbolic spaces, but we are able to create a Steiner spanner that achieves a spanning ratio of $1+\epsilon$ with $\mathcal O_{d,\epsilon}(n)$ edges, using a simple construction that can be maintained dynamically. As a corollary we also get a $(2+\epsilon)$-spanner (in the classical sense) of the same size, where the spanning ratio $2+\epsilon$ is almost optimal among spanners of subquadratic size. Finally, we show that our Steiner spanner directly provides a solution to the approximate nearest neighbour problem: given a point set $P$ in $d$-dimensional hyperbolic space we build the data structure in $\mathcal O_{d,\epsilon}(n\log n)$ time, using $\mathcal O_{d,\epsilon}(n)$ space. Then for any query point $q$ we can find a point $p\in P$ that is at most $1+\epsilon$ times farther from $q$ than its nearest neighbour in $P$ in $\mathcal O_{d,\epsilon}(\log n)$ time. Moreover, the data structure is dynamic and can handle point insertions and deletions with update time $\mathcal O_{d,\epsilon}(\log n)$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员