The Graded of Membership (GoM) model is a powerful tool for inferring latent classes in categorical data, which enables subjects to belong to multiple latent classes. However, its application is limited to categorical data with nonnegative integer responses, making it inappropriate for datasets with continuous or negative responses. To address this limitation, this paper proposes a novel model named the Weighted Grade of Membership (WGoM) model. Compared with GoM, our WGoM relaxes GoM's distribution constraint on the generation of a response matrix and it is more general than GoM. We then propose an algorithm to estimate the latent mixed memberships and the other WGoM parameters. We derive the error bounds of the estimated parameters and show that the algorithm is statistically consistent. The algorithmic performance is validated in both synthetic and real-world datasets. The results demonstrate that our algorithm is accurate and efficient, indicating its high potential for practical applications. This paper makes a valuable contribution to the literature by introducing a novel model that extends the applicability of the GoM model and provides a more flexible framework for analyzing categorical data with weighted responses.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员