We experimentally demonstrate a new widespread read disturbance phenomenon, ColumnDisturb, in real commodity DRAM chips. By repeatedly opening or keeping a DRAM row (aggressor row) open, we show that it is possible to disturb DRAM cells through a DRAM column (i.e., bitline) and induce bitflips in DRAM cells sharing the same columns as the aggressor row (across multiple DRAM subarrays). With ColumnDisturb, the activation of a single row concurrently disturbs cells across as many as three subarrays (e.g., 3072 rows) as opposed to RowHammer/RowPress, which affect only a few neighboring rows of the aggressor row in a single subarray. We rigorously characterize ColumnDisturb and its characteristics under various operational conditions using 216 DDR4 and 4 HBM2 chips from three major manufacturers. Among our 27 key experimental observations, we highlight two major results and their implications. First, ColumnDisturb affects chips from all three major manufacturers and worsens as DRAM technology scales down to smaller node sizes (e.g., the minimum time to induce the first ColumnDisturb bitflip reduces by up to 5.06x). We observe that, in existing DRAM chips, ColumnDisturb induces bitflips within a standard DDR4 refresh window (e.g., in 63.6 ms) in multiple cells. We predict that, as DRAM technology node size reduces, ColumnDisturb would worsen in future DRAM chips, likely causing many more bitflips in the standard refresh window. Second, ColumnDisturb induces bitflips in many (up to 198x) more rows than retention failures. Therefore, ColumnDisturb has strong implications for retention-aware refresh mechanisms that leverage the heterogeneity in cell retention times: our detailed analyses show that ColumnDisturb greatly reduces the benefits of such mechanisms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员