We study tractability properties of the weighted $L_p$-discrepancy. The concept of {\it weighted} discrepancy was introduced by Sloan and Wo\'{z}\-nia\-kowski in 1998 in order to prove a weighted version of the Koksma-Hlawka inequality for the error of quasi-Monte Carlo integration rules. The weights have the aim to model the influence of different coordinates of integrands on the error. A discrepancy is said to be tractable if the information complexity, i.e., the minimal number $N$ of points such that the discrepancy is less than the initial discrepancy times an error threshold $\varepsilon$, does not grow exponentially fast with the dimension. In this case there are various notions of tractabilities used in order to classify the exact rate. For even integer parameters $p$ there are sufficient conditions on the weights available in literature, which guarantee the one or other notion of tractability. In the present paper we prove matching sufficient conditions (upper bounds) and neccessary conditions (lower bounds) for polynomial and weak tractability for all $p \in (1, \infty)$. The proofs of the lower bounds are based on a general result for the information complexity of integration with positive quadrature formulas for tensor product spaces. In order to demonstrate this lower bound we consider as a second application the integration of tensor products of polynomials of degree at most 2.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员