With the increasing capabilities of Large Language Models (LLMs), parallel reasoning has emerged as a new inference paradigm that enhances reasoning robustness by concurrently exploring multiple lines of thought before converging on a final answer. It has become a significant trend to explore parallel reasoning to overcome the fragility of standard sequential methods and improve practical performance. In this paper, we aim to survey and summarize the progress and challenges of parallel reasoning. We first present a formal definition of parallel reasoning and clarify its distinction from related concepts like Chain-of-Thought. Then, we organize and discuss advanced techniques based on a novel taxonomy, including non-interactive reasoning, interactive reasoning, and efficiency-focused decoding strategies. Additionally, we explore various application scenarios, such as solving complex problems and enhancing the reliability of LLM outputs.Finally, we highlight the core challenges of parallel reasoning and suggest potential directions for future research. We hope that our work can provide a useful roadmap for beginners and encourage more research on improving parallel reasoning methods. Related source can be avaliable in https://github.com/PPPP-kaqiu/Awesome-Parallel-Reasoning.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2024年4月16日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
26+阅读 · 2019年11月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2024年4月16日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
26+阅读 · 2019年11月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员