Today navigation applications (e.g., Waze and Google Maps) enable human users to learn and share the latest traffic observations, yet such information sharing simply aids selfish users to predict and choose the shortest paths to jam each other. Prior routing game studies focus on myopic users in oversimplified one-shot scenarios to regulate selfish routing via information hiding or pricing mechanisms. For practical human-in-the-loop learning (HILL) in repeated routing games, we face non-myopic users of differential past observations and need new mechanisms (preferably non-monetary) to persuade users to adhere to the optimal path recommendations. We model the repeated routing game in a typical parallel transportation network, which generally contains one deterministic path and $N$ stochastic paths. We first prove that no matter under the information sharing mechanism in use or the latest routing literature's hiding mechanism, the resultant price of anarchy (PoA) for measuring the efficiency loss from social optimum can approach infinity, telling arbitrarily poor exploration-exploitation tradeoff over time. Then we propose a novel user-differential probabilistic recommendation (UPR) mechanism to differentiate and randomize path recommendations for users with differential learning histories. We prove that our UPR mechanism ensures interim individual rationality for all users and significantly reduces $\text{PoA}=\infty$ to close-to-optimal $\text{PoA}=1+\frac{1}{4N+3}$, which cannot be further reduced by any other non-monetary mechanism. In addition to theoretical analysis, we conduct extensive experiments using real-world datasets to generalize our routing graphs and validate the close-to-optimal performance of UPR mechanism.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2020年1月27日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
14+阅读 · 2020年1月27日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
23+阅读 · 2018年8月3日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员