We identify and prove a general principle: $L_1$ sparsity can be achieved using a redundant parametrization plus $L_2$ penalty. Our results lead to a simple algorithm, \textit{spred}, that seamlessly integrates $L_1$ regularization into any modern deep learning framework. Practically, we demonstrate (1) the efficiency of \textit{spred} in optimizing conventional tasks such as lasso and sparse coding, (2) benchmark our method for nonlinear feature selection of six gene selection tasks, and (3) illustrate the usage of the method for achieving structured and unstructured sparsity in deep learning in an end-to-end manner. Conceptually, our result bridges the gap in understanding the inductive bias of the redundant parametrization common in deep learning and conventional statistical learning.


翻译:我们发现并证明一项一般原则:用多余的超光化加上2美元罚款,就可以实现1美元宽度。我们的结果导致一个简单的算法,\ textit{spred},将1美元无缝地纳入任何现代深层次学习框架。实际上,我们展示了(1)\ textit{spred}在优化Lasso和稀疏编码等常规任务方面的效率,(2)为选择6个基因选择的非线性特征确定基准,(3) 说明在深层学习中以端到端的方式实现结构化和非结构化宽度的方法的使用情况。从概念上,我们的结果弥合了在理解深层学习和常规统计学习中常见的冗余的对应化的内在偏差。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月8日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员