Similar to surprising performance in the standard deep learning, deep nets trained by adversarial training also generalize well for $\textit{unseen clean data (natural data)}$. However, despite adversarial training can achieve low robust training error, there exists a significant $\textit{robust generalization gap}$. We call this phenomenon the $\textit{Clean Generalization and Robust Overfitting (CGRO)}$. In this work, we study the CGRO phenomenon in adversarial training from two views: $\textit{representation complexity}$ and $\textit{training dynamics}$. Specifically, we consider a binary classification setting with $N$ separated training data points. $\textit{First}$, we prove that, based on the assumption that we assume there is $\operatorname{poly}(D)$-size clean classifier (where $D$ is the data dimension), ReLU net with only $O(N D)$ extra parameters is able to leverages robust memorization to achieve the CGRO, while robust classifier still requires exponential representation complexity in worst case. $\textit{Next}$, we focus on a structured-data case to analyze training dynamics, where we train a two-layer convolutional network with $O(N D)$ width against adversarial perturbation. We then show that a three-stage phase transition occurs during learning process and the network provably converges to robust memorization regime, which thereby results in the CGRO. $\textit{Besides}$, we also empirically verify our theoretical analysis by experiments in real-image recognition datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月13日
Arxiv
12+阅读 · 2023年1月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年3月13日
Arxiv
12+阅读 · 2023年1月19日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员