Omni-directional images have been increasingly used in various applications, including virtual reality and SNS (Social Networking Services). However, their availability is comparatively limited in contrast to normal field of view (NFoV) images, since specialized cameras are required to take omni-directional images. Consequently, several methods have been proposed based on generative adversarial networks (GAN) to synthesize omni-directional images, but these approaches have shown difficulties in training of the models, due to instability and/or significant time consumption in the training. To address these problems, this paper proposes a novel omni-directional image synthesis method, 2S-ODIS (Two-Stage Omni-Directional Image Synthesis), which generated high-quality omni-directional images but drastically reduced the training time. This was realized by utilizing the VQGAN (Vector Quantized GAN) model pre-trained on a large-scale NFoV image database such as ImageNet without fine-tuning. Since this pre-trained model does not represent distortions of omni-directional images in the equi-rectangular projection (ERP), it cannot be applied directly to the omni-directional image synthesis in ERP. Therefore, two-stage structure was adopted to first create a global coarse image in ERP and then refine the image by integrating multiple local NFoV images in the higher resolution to compensate the distortions in ERP, both of which are based on the pre-trained VQGAN model. As a result, the proposed method, 2S-ODIS, achieved the reduction of the training time from 14 days in OmniDreamer to four days in higher image quality.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ERP 是 Enterprise Resource Planning(企业资源计划)的简称。 ERP是针对物资资源管理(物流)、人力资源管理(人才流)、财务资源管理(财流)、信息资源管理(信息流)集成一体化的企业管理系统。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2019年3月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员