Large Language Models (LLMs) demonstrate exceptional capabilities across general domains, yet their application to specialized sectors such as mortgage finance requires domain-specific knowledge augmentation while preserving instruction-following fidelity. We present MortgageLLM, a novel domain-specific large language model that addresses this dual challenge. It is developed using a dual-track specialization framework from a single base model (LLaMA-3.1-8B). We opted for this dual-expert approach as a single multi-task model suffers from performance trade-offs, where optimizing for structured tasks (via SFT) degrades conversational fidelity (via DPO). Our dual-track method solves this by creating two specialists, allowing each to be optimally trained for its distinct capability. Our approach applies the instruction residual technique to restore instruction-following capabilities post-domain adaptation without supervised fine-tuning. We contribute: (1) application of this residual technique to the highly specialized mortgage finance domain; (2) a dual-expert architecture combining a conversational Q&A model and a structured task model for classification and summarization; and (3) an intelligent task routing mechanism using few-shot classification performed by one of the expert models itself. We validate our approach on domain-specific benchmarks, where our final model (MLM v2) significantly outperforms the base LLaMA-3.1-8B-Instruct, achieving an LLM-as-a-Judge summarization score of 4.58 (vs. 3.99), a Q&A score of 4.09 (vs. 4.0), and a classification score of 2.6 (vs. 1.2). On semantic similarity, our model achieved a BERTScore of 0.77 for summarization (vs. 0.74), 0.68 for Q&A (vs. 0.58), and 0.75 for classification (vs. 0.73), substantially outperforming baseline approaches.


翻译:大语言模型(LLMs)在通用领域展现出卓越能力,但在抵押贷款金融等专业领域的应用,需要在保持指令遵循忠实度的同时增强领域特定知识。本文提出MortgageLLM,一种新颖的领域专用大语言模型,以应对这一双重挑战。该模型基于单一基础模型(LLaMA-3.1-8B),通过双轨专业化框架开发。我们采用双专家方法,因为单一多任务模型存在性能权衡问题——针对结构化任务(通过监督微调SFT)优化会损害对话忠实度(通过直接偏好优化DPO)。我们的双轨方法通过创建两个专家模型解决了这一问题,使每个模型能针对其特定能力进行最优训练。我们应用指令残差技术,在领域自适应后无需监督微调即可恢复指令遵循能力。本文贡献包括:(1)将残差技术应用于高度专业化的抵押贷款金融领域;(2)结合对话问答模型与结构化任务模型(用于分类与摘要)的双专家架构;(3)由专家模型自身执行少样本分类的智能任务路由机制。我们在领域特定基准上验证了该方法,最终模型(MLM v2)显著优于基础模型LLaMA-3.1-8B-Instruct:LLM-as-a-Judge摘要得分达4.58(对比3.99),问答得分4.09(对比4.0),分类得分2.6(对比1.2);在语义相似度方面,摘要任务BERTScore达0.77(对比0.74),问答任务0.68(对比0.58),分类任务0.75(对比0.73),全面超越基线方法。

0
下载
关闭预览

相关内容

自生成兵棋AI:基于大型语言模型的双层Agent任务规划
专知会员服务
89+阅读 · 2024年4月11日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
多项NLP任务新SOTA,Facebook提出预训练模型BART
机器之心
22+阅读 · 2019年11月4日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
多项NLP任务新SOTA,Facebook提出预训练模型BART
机器之心
22+阅读 · 2019年11月4日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员