In the rapidly evolving landscape of software development, addressing security vulnerabilities in open-source software (OSS) has become critically important. However, existing research and tools from both academia and industry mainly relied on limited solutions, such as vulnerable version adjustment and adopting patches, to handle identified vulnerabilities. However, far more flexible and diverse countermeasures have been actively adopted in the open-source communities. A holistic empirical study is needed to explore the prevalence, distribution, preferences, and effectiveness of these diverse strategies. To this end, in this paper, we conduct a comprehensive study on the taxonomy of vulnerability remediation tactics (RT) in OSS projects and investigate their pros and cons. This study addresses this oversight by conducting a comprehensive empirical analysis of 21,187 issues from GitHub, aiming to understand the range and efficacy of remediation tactics within the OSS community. We developed a hierarchical taxonomy of 44 distinct RT and evaluated their effectiveness and costs. Our findings highlight a significant reliance on community-driven strategies, like using alternative libraries and bypassing vulnerabilities, 44% of which are currently unsupported by cutting-edge tools. Additionally, this research exposes the community's preferences for certain fixing approaches by analyzing their acceptance and the reasons for rejection. It also underscores a critical gap in modern vulnerability databases, where 54% of CVEs lack fixing suggestions, a gap that can be significantly mitigated by leveraging the 93% of actionable solutions provided through GitHub issues.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员