Recent advancements in Reinforcement Learning with Verifiable Rewards (RLVR) have gained significant attention due to their objective and verifiable reward signals, demonstrating strong performance in reasoning and code generation tasks. However, the potential safety risks associated with RLVR remain underexplored. This paper presents HarmRLVR, the first systematic investigation into the alignment reversibility risk of RLVR. We show that safety alignment can be rapidly reversed using GRPO with merely 64 harmful prompts without responses, causing models to readily comply with harmful instructions. Across five models from Llama, Qwen, and DeepSeek, we empirically demonstrate that RLVR-based attacks elevate the average harmfulness score to 4.94 with an attack success rate of 96.01\%, significantly outperforming harmful fine-tuning while preserving general capabilities. Our findings reveal that RLVR can be efficiently exploited for harmful alignment, posing serious threats to open-source model safety. Please see our code at https://github.com/lyxx2535/HarmRLVR.
翻译:暂无翻译