We clarify the complexity of answering unions of conjunctive queries over knowledge bases formulated in the description logic $\mathcal S$, the extension of $\mathcal{ALC}$ with transitive roles. Contrary to what existing partial results suggested, we show that the problem is in fact 2ExpTime-complete; hardness already holds in the presence of two transitive roles and for Boolean conjunctive queries. We complement this result by showing that the problem remains in coNExpTime when the input query is rooted or is restricted to use at most one transitive role (but may use arbitrarily many non-transitive roles).


翻译:我们阐明了在描述逻辑$\mathcal S$(即$\mathcal{ALC}$扩展了传递角色)中构建的知识库上回答合取查询并集的复杂度问题。与现有部分研究结果所暗示的不同,我们证明该问题实际上是2ExpTime完全的;仅需两个传递角色及布尔合取查询即可导致问题困难性。我们进一步补充证明:当输入查询为根查询或限制至多使用一个传递角色(但可任意使用多个非传递角色)时,该问题仍保持在coNExpTime复杂度类中。

0
下载
关闭预览

相关内容

描述逻辑(DescriptionLogic)是基于对象的知识表示的形式化,它吸取了KL-ONE的主要思想,是一阶谓词逻辑的一个可判定子集。除了知识表示以外,描述逻辑还用在其它许多领域,它被认为是以对象为中心的表示语言的最为重要的归一形式。描述逻辑的重要特征是很强的表达能力和可判定性,它能保证推理算法总能停止,并返回正确的结果。在众多知识表示的形式化方法中,描述逻辑在十多年来受到人们的特别关注,主要原因在于:它们有清晰的模型-理论机制;很适合于通过概念分类学来表示应用领域;并提供了很多有用的推理服务。
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月1日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员