Sexism reinforces gender inequality and social exclusion by perpetuating stereotypes, bias, and discriminatory norms. Noting how online platforms enable various forms of sexism to thrive, there is a growing need for effective sexism detection and mitigation strategies. While computational approaches to sexism detection are widespread in high-resource languages, progress remains limited in low-resource languages where limited linguistic resources and cultural differences affect how sexism is expressed and perceived. This study introduces the first Hausa sexism detection dataset, developed through community engagement, qualitative coding, and data augmentation. For cultural nuances and linguistic representation, we conducted a two-stage user study (n=66) involving native speakers to explore how sexism is defined and articulated in everyday discourse. We further experiment with both traditional machine learning classifiers and pre-trained multilingual language models and evaluating the effectiveness few-shot learning in detecting sexism in Hausa. Our findings highlight challenges in capturing cultural nuance, particularly with clarification-seeking and idiomatic expressions, and reveal a tendency for many false positives in such cases.


翻译:性别歧视通过固化刻板印象、偏见和歧视性规范,加剧了性别不平等与社会排斥。鉴于网络平台助长了多种形式的性别歧视蔓延,对有效的性别歧视检测与缓解策略的需求日益增长。尽管在高资源语言中,性别歧视检测的计算方法已广泛应用,但在低资源语言中进展依然有限——这些语言因资源匮乏及文化差异,影响了性别歧视的表达与感知方式。本研究首次引入了通过社区参与、质性编码与数据增强构建的豪萨语性别歧视检测数据集。为捕捉文化细微差异与语言表征,我们开展了一项两阶段用户研究(n=66),邀请母语者探讨日常话语中性别歧视的定义与表达方式。进一步地,我们实验了传统机器学习分类器与预训练多语言模型,并评估了少样本学习在豪萨语性别歧视检测中的有效性。研究结果凸显了捕捉文化细微差异的挑战,尤其在涉及澄清性询问与惯用表达时,并揭示了此类情况下易产生大量误判的倾向。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员