In this paper it is shown that the nonfeedback capacity of multiple-input multiple-output (MIMO) additive Gaussian noise (AGN) channels, when the noise is nonstationary and unstable, is characterized by an asymptotic optimization problem that involves, a generalized matrix algebraic Riccati equation (ARE) of filtering theory, and a matrix Lyapunov equation of stability theory of Gaussian systems. Furthermore, conditions are identified such that, the characterization of nonfeedback capacity corresponds to the uniform asymptotic per unit time limit, over all initial distributions, of the characterization of a finite block or transmission without feedback information (FTwFI) capacity, which involves, two generalized matrix difference Riccati equations (DREs) and a matrix difference Lyapunov equation.


翻译:本文表明,当噪音非静止和不稳定时,多种投入多重产出(MIMO)加聚高斯噪声(AGN)渠道的不退缩能力,其特征是无症状优化问题,涉及过滤理论的通用矩阵代数立差方程(ARE)和高森系统稳定性理论的Lyapunov方程,此外,还确定了一些条件,即非退缩能力的定性符合所有初始分布的单位统一零用限,即限定区块或传输的定性没有反馈信息(FTwFI)能力,这涉及两种通用矩阵差异里卡提方程(RYEs)和矩阵差异Lyapunov方程。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年6月21日
Arxiv
66+阅读 · 2021年6月18日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员