Let $C$ be a linear code of length $n$ and dimension $k$ over the finite field $\mathbb{F}_{q^m}$. The trace code $\mathrm{Tr}(C)$ is a linear code of the same length $n$ over the subfield $\mathbb{F}_q$. The obvious upper bound for the dimension of the trace code over $\mathbb{F}_q$ is $mk$. If equality holds, then we say that $C$ has maximum trace dimension. The problem of finding the true dimension of trace codes and their duals is relevant for the size of the public key of various code-based cryptographic protocols. Let $C_{\mathbf{a}}$ denote the code obtained from $C$ and a multiplier vector $\mathbf{a}\in (\mathbb{F}_{q^m})^n$. In this paper, we give a lower bound for the probability that a random multiplier vector produces a code $C_{\mathbf{a}}$ of maximum trace dimension. We give an interpretation of the bound for the class of algebraic geometry codes in terms of the degree of the defining divisor. The bound explains the experimental fact that random alternant codes have minimal dimension. Our bound holds whenever $n\geq m(k+h)$, where $h\geq 0$ is the Singleton defect of $C$. For the extremal case $n=m(h+k)$, numerical experiments reveal a closed connection between the probability of having maximum trace dimension and the probability that a random matrix has full rank.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员