In resource allocation, we often require that the output allocation of an algorithm is stable against input perturbation because frequent reallocation is costly and untrustworthy. Varma and Yoshida (SODA'21) formalized this requirement for algorithms as the notion of average sensitivity. Here, the average sensitivity of an algorithm on an input instance is, roughly speaking, the average size of the symmetric difference of the output for the instance and that for the instance with one item deleted, where the average is taken over the deleted item. In this work, we consider the average sensitivity of the knapsack problem, a representative example of a resource allocation problem. We first show a $(1-\epsilon)$-approximation algorithm for the knapsack problem with average sensitivity $O(\epsilon^{-1}\log \epsilon^{-1})$. Then, we complement this result by showing that any $(1-\epsilon)$-approximation algorithm has average sensitivity $\Omega(\epsilon^{-1})$. As an application of our algorithm, we consider the incremental knapsack problem in the random-order setting, where the goal is to maintain a good solution while items arrive one by one in a random order. Specifically, we show that for any $\epsilon > 0$, there exists a $(1-\epsilon)$-approximation algorithm with amortized recourse $O(\epsilon^{-1}\log \epsilon^{-1})$ and amortized update time $O(\log n+f_\epsilon)$, where $n$ is the total number of items and $f_\epsilon>0$ is a value depending on $\epsilon$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月30日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员