Autonomous racing is becoming popular for academic and industry researchers as a test for general autonomous driving by pushing perception, planning, and control algorithms to their limits. While traditional control methods such as MPC are capable of generating an optimal control sequence at the edge of the vehicles physical controllability, these methods are sensitive to the accuracy of the modeling parameters. This paper presents TC-Driver, a RL approach for robust control in autonomous racing. In particular, the TC-Driver agent is conditioned by a trajectory generated by any arbitrary traditional high-level planner. The proposed TC-Driver addresses the tire parameter modeling inaccuracies by exploiting the heuristic nature of RL while leveraging the reliability of traditional planning methods in a hierarchical control structure. We train the agent under varying tire conditions, allowing it to generalize to different model parameters, aiming to increase the racing capabilities of the system in practice. The proposed RL method outperforms a non-learning-based MPC with a 2.7 lower crash ratio in a model mismatch setting, underlining robustness to parameter discrepancies. In addition, the average RL inference duration is 0.25 ms compared to the average MPC solving time of 11.5 ms, yielding a nearly 40-fold speedup, allowing for complex control deployment in computationally constrained devices. Lastly, we show that the frequently utilized end-to-end RL architecture, as a control policy directly learned from sensory input, is not well suited to model mismatch robustness nor track generalization. Our realistic simulations show that TC-Driver achieves a 6.7 and 3-fold lower crash ratio under model mismatch and track generalization settings, while simultaneously achieving lower lap times than an end-to-end approach, demonstrating the viability of TC-driver to robust autonomous racing.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员