The growing scale of evaluation tasks has led to the widespread adoption of automated evaluation using LLMs, a paradigm known as "LLM-as-a-judge". However, improving its alignment with human preferences without complex prompts or fine-tuning remains challenging. Previous studies mainly optimize based on shallow outputs, overlooking rich cross-layer representations. In this work, motivated by preliminary findings that middle-to-upper layers encode semantically and task-relevant representations that are often more aligned with human judgments than the final layer, we propose LAGER, a post-hoc, plug-and-play framework for improving the alignment of LLM-as-a-Judge point-wise evaluations with human scores by leveraging internal representations. LAGER produces fine-grained judgment scores by aggregating cross-layer score-token logits and computing the expected score from a softmax-based distribution, while keeping the LLM backbone frozen and ensuring no impact on the inference process. LAGER fully leverages the complementary information across different layers, overcoming the limitations of relying solely on the final layer. We evaluate our method on the standard alignment benchmarks Flask, HelpSteer, and BIGGen using Spearman correlation, and find that LAGER achieves improvements of up to 7.5% over the best baseline across these benchmarks. Without reasoning steps, LAGER matches or outperforms reasoning-based methods. Experiments on downstream applications, such as data selection and emotional understanding, further show the generalization of LAGER.
翻译:暂无翻译