Reasoning about a model's accuracy on a test sample from its confidence is a central problem in machine learning, being connected to important applications such as uncertainty representation, model selection, and exploration. While these connections have been well-studied in the i.i.d. settings, distribution shifts pose significant challenges to the traditional methods. Therefore, model calibration and model selection remain challenging in the unsupervised domain adaptation problem--a scenario where the goal is to perform well in a distribution shifted domain without labels. In this work, we tackle difficulties coming from distribution shifts by developing a novel importance weighted group accuracy estimator. Specifically, we formulate an optimization problem for finding an importance weight that leads to an accurate group accuracy estimation in the distribution shifted domain with theoretical analyses. Extensive experiments show the effectiveness of group accuracy estimation on model calibration and model selection. Our results emphasize the significance of group accuracy estimation for addressing challenges in unsupervised domain adaptation, as an orthogonal improvement direction with improving transferability of accuracy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员