We show that, for every $k\geq 2$, $C_{2k}$-freeness can be decided in $O(n^{1-1/k})$ rounds in the \CONGEST{} model by a randomized Monte-Carlo distributed algorithm with one-sided error probability $1/3$. This matches the best round-complexities of previously known algorithms for $k\in\{2,3,4,5\}$ by Drucker et al. [PODC'14] and Censor-Hillel et al. [DISC'20], but improves the complexities of the known algorithms for $k>5$ by Eden et al. [DISC'19], which were essentially of the form $\tilde O(n^{1-2/k^2})$. Our algorithm uses colored BFS-explorations with threshold, but with an original \emph{global} approach that enables to overcome a recent impossibility result by Fraigniaud et al. [SIROCCO'23] about using colored BFS-exploration with \emph{local} threshold for detecting cycles. We also show how to quantize our algorithm for achieving a round-complexity $\tilde O(n^{\frac{1}{2}-\frac{1}{2k}})$ in the quantum setting for deciding $C_{2k}$ freeness. Furthermore, this allows us to improve the known quantum complexities of the simpler problem of detecting cycles of length \emph{at most}~$2k$ by van Apeldoorn and de Vos [PODC'22]. Our quantization is in two steps. First, the congestion of our randomized algorithm is reduced, to the cost of reducing its success probability too. Second, the success probability is boosted using a new quantum framework derived from sequential algorithms, namely Monte-Carlo quantum amplification.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员