The Mahalanobis distance is a classical tool used to measure the covariance-adjusted distance between points in $\bbR^d$. In this work, we extend the concept of Mahalanobis distance to separable Banach spaces by reinterpreting it as a Cameron-Martin norm associated with a probability measure. This approach leads to a basis-free, data-driven notion of anomaly distance through the so-called variance norm, which can naturally be estimated using empirical measures of a sample. Our framework generalizes the classical $\bbR^d$, functional $(L^2[0,1])^d$, and kernelized settings; importantly, it incorporates non-injective covariance operators. We prove that the variance norm is invariant under invertible bounded linear transformations of the data, extending previous results which are limited to unitary operators. In the Hilbert space setting, we connect the variance norm to the RKHS of the covariance operator, and establish consistency and convergence results for estimation using empirical measures with Tikhonov regularization. Using the variance norm, we introduce the notion of a kernelized nearest-neighbour Mahalanobis distance, and study some of its finite-sample concentration properties. In an empirical study on 12 real-world data sets, we demonstrate that the kernelized nearest-neighbour Mahalanobis distance outperforms the traditional kernelized Mahalanobis distance for multivariate time series novelty detection, using state-of-the-art time series kernels such as the signature, global alignment, and Volterra reservoir kernels.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员