This paper introduces SparseOptimizer, a novel deep learning optimizer that exploits Moreau-Yosida regularization to naturally induce sparsity in large language models such as BERT, ALBERT and GPT. Key to the design of SparseOptimizer is an embedded shrinkage operator, which imparts sparsity directly within the optimization process. This operator, backed by a sound theoretical framework, includes an analytical solution, thereby reinforcing the optimizer's robustness and efficacy. Crucially, SparseOptimizer's plug-and-play functionality eradicates the need for code modifications, making it a universally adaptable tool for a wide array of large language models. Empirical evaluations on benchmark datasets such as GLUE, RACE, SQuAD1, and SQuAD2 confirm that SparseBERT and SparseALBERT, when sparsified using SparseOptimizer, achieve performance comparable to their dense counterparts, BERT and ALBERT, while significantly reducing their parameter count. Further, this work proposes an innovative optimizer-compiler co-design strategy, demonstrating the potential of inference acceleration (\textbf{3.37x}, \textbf{6.30x}, and \textbf{7.15x} in comparison with Pytorch, TensorFlow, and LLVM generic compile, respectively) in SparseBERT when paired with an appropriately designed compiler. This study represents a significant step forward in the evolution of efficient, scalable, and high-performing large language models, setting a precedent for future exploration and optimization in this domain. The SparseOptimizer code and SparseALBERT model will be made available upon paper acceptance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员