We combine philosophical theories with quantitative analyses of online data to propose a sophisticated approach to social media influencers. Identifying influencers as communication systems emerging from a dialectic interactional process between content creators and in-development audiences, we define them mainly using the composition of their audience and the type of publications they use to communicate. To examine these two parameters, we analyse the audiences of 619 Instagram accounts of French, English, and American influencers and 2,400 of their publications in light of Girard's mimetic theory and McLuhan's media theory. We observe meaningful differences in influencers' profiles, typical audiences, and content type across influencers' classes, supporting the claim that such communication systems are articulated around 'reading contracts' upon which influencers' image is based and from which their influence derives. While the upkeep of their influence relies on them sticking to this contract, we observe that successful influencers shift their content type when growing their audiences and explain the strategies they implement to address this double bind. Different types of contract breaches then lead to distinct outcomes, which we identify by analysing various types of followers' feedback. In mediating social interactions, digital platforms reshape society in various ways; this interdisciplinary study helps understand how the digitalisation of social influencers affects reciprocity and mimetic behaviours.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员