Background: Previous research highlights that common misconceptions about developer productivity lead to harmful and inaccurate evaluations of software work, pointing to the need for organizations to differentiate between measures of production, productivity, and performance as an important step that helps to suggest improvements to how we measure the success of engineering teams. Methodology: Using a card sort, we explored how a Three Layer Productivity Framework was used by 16 software engineers at a Software Engineering focused conference to rank measures of success, first in the current practice of their organization and second in their individual beliefs about the best ways to measure engineering success. Results and discussion: Overall, participants preferred organizations to 1) continue their prioritized focus on performance layer metrics, 2) increase the focus on productivity metrics, and 3) decrease their focus on production metrics. When asked about the current metrics of their organizations, while all roles reported a current focus on performance metrics, only ICs reported a strong focus on production metrics. When asked about metrics they would prefer, all roles preferred more performance metrics but only leaders and ICs also wanted productivity metrics. While all participants were aligned on performance metrics being a top preference, there was misalignment on which specific metrics are used. Our findings show that when measuring developer success, organizations should continue measurement using performance metrics, consider an increased focus on productivity metrics, and consider a decreased focus on production metrics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月30日
Arxiv
0+阅读 · 2023年6月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员