We study nonparametric regression using an over-parameterized two-layer neural networks trained with algorithmic guarantees in this paper. We consider the setting where the training features are drawn uniformly from the unit sphere in $\RR^d$, and the target function lies in an interpolation space commonly studied in statistical learning theory. We demonstrate that training the neural network with a novel Preconditioned Gradient Descent (PGD) algorithm, equipped with early stopping, achieves a sharp regression rate of $\cO(n^{-\frac{2\alpha s'}{2\alpha s'+1}})$ when the target function is in the interpolation space $\bth{\cH_K}^{s'}$ with $s' \ge 3$. This rate is even sharper than the currently known nearly-optimal rate of $\cO(n^{-\frac{2\alpha s'}{2\alpha s'+1}})\log^2(1/\delta)$~\citep{Li2024-edr-general-domain}, where $n$ is the size of the training data and $\delta \in (0,1)$ is a small probability. This rate is also sharper than the standard kernel regression rate of $\cO(n^{-\frac{2\alpha}{2\alpha+1}})$ obtained under the regular Neural Tangent Kernel (NTK) regime when training the neural network with the vanilla gradient descent (GD), where $2\alpha = d/(d-1)$. Our analysis is based on two key technical contributions. First, we present a principled decomposition of the network output at each PGD step into a function in the reproducing kernel Hilbert space (RKHS) of a newly induced integral kernel, and a residual function with small $L^{\infty}$-norm. Second, leveraging this decomposition, we apply local Rademacher complexity theory to tightly control the complexity of the function class comprising all the neural network functions obtained in the PGD iterates. Our results further suggest that PGD enables the neural network to escape the linear NTK regime and achieve improved generalization.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员